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Abstract--Recursive feedback is defined and discussed

as a framework for development of specific algorithms

and procedures that propagate the time-domain solution

for a dynamical system simulation consisting of multiple

numerically coupled self-contained stand-alone

subsystem simulations. A satellite motion example

containing three subsystems (orbit dynamics, attitude

dynamics, and aerodynamics) has been defined and

constructed using this approach. Conventional solution

methods are used in the subsystem simulations.

Centralized and distributed versions of coupling
structure have been addressed. Numerical results are

evaluated by direct comparison with a standard total-

system simultaneous-solution approach.

and naturally facilitates high fidelity and broad scope

through collaboration across interfaces that can be
implemented in the same physical and engineering terms

that define them in the actual system. Such simplicity

promotes clarity of communication and ease of

understanding, both of which have many positive benefits.

Individual sub-simulations can potentially be implemented
on separate, remote, and dissimilar computational

platforms, and this portends numerous advantages and

possibilities as computer network capabilities improve.

II. RECURSIVE FEEDBACK ALGORITHM

A. Concept

I. INTRODUCTION

Digital simulations of dynamical systems are often built

by constructing algorithms that sore a set of differential-

algebraic equations that mathematically model the system.
The equations are solved numerically, as a single coupled

set, using one of several standard or modified numerical

integration methods. In some cases, software is written in a

language such as FORTRAN or C to define the equations,
and an existing or slightly modified ordinary differential

equation (ODE) solver, perhaps a Runge-Kutta

implementation, is employed to perform the integration. In

other cases, an in-house development such as Marshall
System for Aerospace Simulati_m (MARSYAS) or a

commercial off-the-shelf product such as

MATLAB®/SIMULINK ® is used to act as a higher level

facilitator of what is ultimately J mathematically similar

approach.

System-level digital solution _f coupled "sland-alone"

dynamical simulations is a fundamentally different approach

to system simulation, and fundamentally different numerical

procedures are required. Recursivc feedback is a conceptual
method from which a family oi appropriate algorithms,

processes, and specific numerical procedures can be
derived.

Coupled subsystem simulati, m architecture provides
near complete independence of stand-alone sub-simulations,

Referring to Fig. 1, the subsystems are represented by

independent, self-contained, time-domain, dynamical

simulations that can be commanded to run from a given set
of initial conditions over a predetermined segment of time

when provided with input signals as functions of time over

that interval. In general, the time segment, also referred to

as a convergence interval, is short compared with the total

duration of the simulation, but may be significantly larger
than the integration step size associated with a

typical subsystem. For each new stage of recursion, revised

subsystem input signals are computed by summing system-
level input signals with current stage feedback (coupling)
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signals that have been generated as if the loop were open.

New subsystem responses and feedback signals are

computed using the revised subsystem input signals in

conjunction with original initial conditions. The process is
started by ignoring the feedback ._ignal, and continues

recursively until convergence is achieved. After

convergence, initial conditions ar,: replaced with final
conditions and the process is restarted for the next segment

of time. System response over the t_tai desired duration of
the simulation is the concatenalcd set of combined

subsystem responses over many time segments.

B. Insights for Specific Design

Because Fig. 1 describes a system of considerable

generality whose complexity for a specific case can range

from simple to great, further clarification of the process
seems appropriate. The simplest "system" could arguably be

a single integrator in the forward path, a constant multiplier

(gain) in the backward (feedback) path, no (zero) system-

level input, and a nonzero initial condition on the output. In

that case, there is one linear subsystem, and that subsystem

is a single integrator. The output ft_nction is the integral of

the subsystem-level input function with respect to time, and
can be generated independently _,nd directly by simply

computing area under the curve and adding the initial

condition. The coupling matrix be_)mes a scalar (value of

the loop gain), and actually represents direct feedback
rather than coupling. The process, however, does not

explicitly make such a distinction, nor does it need to. The

summing junction becomes moot since there is no system-

level input. The point at which feedback data is transferred

from one stage to the next remains as depicted in Fig. 1, but
does not exist in the analog system to be digitally simulated.

The scalar differential equation that models the analog

system is

y(t) =/<y,it) , (1)

where t is time and k is the loop gmn, and the exact closed-

form solution for the output re:_ponse is given by the

exponential function

y(t) = y(0)[_ "_'] , (2)

where y(0) represents the initial value of the output y(t).

Applying recursive feedback to this system, the output is

first computed as a function of time over the convergence
interval as if there were no (zero) feedback. This function is

referred to as the stage zero output response. Because the

system input function is zero for tl_is example, the response

is simply a constant function of time symbolically
represented by

y_0) (t) = y(0), (3)

where the parenthesized superscript is the stage index. Next,

the stage zero feedback function is computed by multiplying

the stage zero output response function by the loop gain k.

After "moving" the feedback function numerical data across

the recursive data transfer point (future stage to current

stage in Fig. 1) and summing it with the system-level input

function (zero), it becomes the stage one subsystem input

function. Stage one response can now be computed by
numerical integration of the new subsystem input function

with application of the original initial condition y(0). In

the absence of numerical error, symbolic representation of
the result is

y(_) (t) = y(0)[l + kt] . (4)

Repeating the process, symbolic representation of the stage
two result is

y(Z)(t) = y(O)[l+kt+ (kt)2 ] , (5)
2

By induction, the nth stage response is given by

y(',)(t)=y(O)[l+kt+(kt_)2z+...+(kt)" n----_-- (6)

Clearly, if sufficiently continued, the symbolic recursive

process yields a solution that approaches the exact solution
(2). In theory, the time interval (convergence interval) for

this case can be as long as desired; in practice, it must be

restricted because of numerical integration and round-off
error._,.

As another example, consider the "system" to be an

undamped oscillator governed by the scalar differential

equation

j)(t) + a)2y(t) = 0 , (7)

where (.0 is the frequency of oscillation. A simulation of

this system by recursive feedback can be set up in at least

two very different ways. One design possibility is to define
a single subsystem, best described as a double integrator, or

two _ingle integrators in series. The output function of the

subsystem is determined by integrating its input function
twice. The coupling matrix once again degenerates to a

scalar constant, -(.0 2 , and the system input function is

zero Assuming a nonzero initial condition y(0)on the

output (displacement), application of recursive feedback to

this system results in a truncated series definition of y(t),

and at the nth recursion stage, a symbolic representation is

y(_)(t) = y(O) 1-_o 2 -- +.-.(-1)noJ 2" _ . (8)
2 (2n)!J

The_l for a sufficiently large number of recursion stages, the

appzoximate solution approaches the exact solution

y(t) = y(O)[coswt]. (9)

Once again the number of terms in the series corresponds

directly to the number of recursion stages, but the order of

2



the series with respect to time is twice the number of

recursion stages.

In contrast, a second design pos_,ibility is to define two

subsystems that are both single integrators. The governing
differential equation is now given by the two-dimensional

matrix-vector equation

_'(t) = KYtt) , (10)

where the coupling matrix is given b y

K = _tO2 0 '

and the output function is given by

=IYI(t) [ (12)
Y(t) LYz (t) l '

where Yl (t) represents displacement and Yz (t) represents

velocity. Application of recursive feedback to this system

results in a truncated series definiti_,n of Y(t). At the nth

recursion stage, the approximate system response function

is symbolically represented by

[ t 2 t"]
Y_"_ (t) = I + Kt+ K 2 _ + .... _K n

2 n! Y(0). (13)

Again, each recursion stage, in effect, adds one term to the

truncated series approximation of thc exact solution.

For the two-subsystem, twin-integrator approach, it
takes two recursion stages to re.ich the same order of

approximation in time that was reached in one stage with

the single-subsystem, double-integrJtor approach. However,

the twin integrators represent independent operations that

can be numerically performed in parallel; while the double
integrator represents either a single operation, or two

operations that must be performed in series. In the double

integrator case, velocity, _(t), _loes not appear at the

system level, only one function c_sses the recursive data

transfer point, and only one fun_:tion is available to be

checked for convergence at the system level. In the twin

integrator case, velocity, y2(t), appears at the system

level, Yl (t) and Y2 (t) both cro,.s the recursive transfer

point, and both functions are avatlable to be checked for
convergence at the system level. Clearly, in a more complex

situation, the relative merits of these approaches become

simulation design and performance issues.

For the broader range of systems contained within the

framework of Fig. 1, the nature of the coupling matrix is a

function of many possible simulat_n design choices. In its

most basic form, a coupler (elemem of the coupling matrix)

would simply route signals from one subsystem to another

without modifying them. In its most complex form, it could

become a multidimensional nonlinear operator as well. As

implied by the double integrator example when viewed as

two single-integrator subsystems in series, it is also possible

to distribute coupling functions throughout the system.

Thus, the concept of a coupling matrix is not essential to

the princess; it may, however be useful in organization and

control of a large simulation at the system level. In a

particular situation, one might choose to view several

subsystem simulations as a single combined set when the

nature of the coupling among them is such that an output

respor_se can be determined directly from an input signal

without necessity for recursion among members of the set.

Typical coupler functions are likely to be coordinate
transfi_rmations, gain multiplications, interpolations, and

other data modification or routing tasks that must be

performed to make proper interface connections among a

set of predefined or existing sub-simulations.

C. Convergence

To be of practical value in simulation of dynamical

systems, the ability of the recursion process to achieve

convergence needs to be understood in a general sense so

that reasonable assurance of convergence can be provided

for specific circumstances. The convergence issue has been

addressed for some simple nonlinear examples as well as a

time varying example in [1]. For the nonlinear examples,

each recursion stage adds higher order terms; but for a

given number of correct terms in the series expansion, a

greater number of recursion stages is required. For these

systems, the convergence interval cannot be arbitrarily

long, even without integration and round-off errors,
because the series becomes divergent. The degree of

restriction required for convergence depends on the initial
condttion.

The analysis of [2] addresses linearly coupled

subsystems where the subsystems are also linear but are

multi-dimensional. While subsystem output signals are

linearly related to the subsystem states, the number of

output signals may be less than the number of states. The

recursive feedback process is analytically applied based

only on inputs and outputs to the subsystems, as depicted in

Fig. 1. Because no algebraic feed-through of subsystem

inpu_ signals is allowed, the possibility of system-level

algebraic loops is excluded. However, the analysis of [3],

though much less straightforward, addresses a similar

system with inclusion of system-level algebraic loops.

From this work and other experience, it appears that

convergence can be achieved for a broad range of ordinary

systems simply by controlling the length of the

convergence interval. It is apparent, however, that this is



notalwaysthecase.Forexample,systemswithlower-gain
algebraicloopsmayconverge,whilethosewithhighergain
maynot.Theessenceof thisproblemcanbeunderstoodby
substitutinga unit gainmultiplicationprocessfor the
integrationprocessintheexamplesystemdescribedby(1),
andaddinganon-zeroinputfunction.Thiscreatesapurely
algebraicloop,andanalyticalapplicationof therecursive
feedbackalgorithmnowgeneratesageometricseriesrather
thanan exponentialseries;and convergencebecomes
conditional.It shouldbe notedthata non-convergent
systemof thistypemightalsobephysicallyuntenableor
notmeaningful.The"guarantees"andinsightswithrespect
toconvergencethatcomewithanalyseslikethatin [3]are
weakenedatbestandtotallylostatworstwithoutthelinear
modelassumption.However,onedoeshaveaguaranteeof
solutionexistenceanduniquenessfor a broadrangeof
sufficientlywell behavednonlinearsystems[4], anda
convergedrecursivefeedbackprccessis indicativeof a
solution with exceptionof questionsconcerning
discretizationerror, round-off error, inappropriate
tolerances,etc.Byshorteningthelengthoftheconvergence
interval,thenumberofrecursionstagesrequiredtoachieve
convergenceisnormallydecreased_or,inanon-convergent
situation,the likelihoodconvergenceis increased.The
possibilityexistsfor automaticir_processcontrolof the
convergenceintervallengthas well as thenumberof
recursionstages,notunlikecontrolof stepsizeandchoice
oforderinaconventionalalgorithmfornumericalsolution
ofdifferentialequations.

III.EXAMPLESYSTEM

Theexamplesystemconsists c,f a satellite in low-Earth

orbit that is experiencing aerodynamic effects in addition to

gravitational effects. The spacecr_,ft is idealized as a rigid
body of rectangular "box" shape, illustrated in Fig. 2. The

center of mass is offset from the g_ometric center by a small
amount in all three axes, and moments of inertia are such

that there are two large but somewhat unequal principal

Dinbensions:

Length: I50 m

Width: 40 m

Height: 30 In

H

Roll

x

Mass Properties:

M _,s: 10,000 kg

Figure 2: Spacecraft Properties and Coordinate System

values, while the third principal value is much smaller. The

principal axes are normal to the box surfaces so that all

cross products of inertia are zero. The models are based on
constant density atmosphere, "panel" aerodynamics and

spherical Earth gravity. There is no attitude control, so the

body is allowed to tumble under the influence of gravity and

aerodynamics. Gravitational and aerodynamic torques affect

the rotational dynamics of the rigid body, while
gravitational and aerodynamic forces affect the translational

dynamics. Both translational and rotational dynamics affect

aerodynamic forces and torques, so a natural (analog)

feedback loop is apparent. This example falls in the general

categ.ry of nonlinear, continuous systems.

IV. INDIVIDUAL SUBSYSTEM SIMULATIONS

A. Orbit Dynamics

The orbit dynamics simulation input signal is

aerodynamic force, and output signals are orbit radius and

velocity vectors. All orbit dynamics simulation variables are
referenced to an Earth-centered inertial coordinate system

as delined in Fig. 3. The underlying mathematical model, of

the t_pe found in [5], is represented by

d2g - Fgrav + ff-" (14)
msat dt 2 aero

and

GmEarthmsat R (15)
Fgrav = R3 ,

where G is the universal gravitational constant, nlEart h

and rosa t are masses of the Earth and satellite, and /_ is

the .rbit radius vector. /_ extends from the center of the

Earttl to the center of mass of the satellite. Faero is the

aerodynamic force, and is derived from output of the

aerodynamics subsystem simulation. After rearrangement to
firstorder form (six states), numerical solution of (14) is

accomplished with a fourth-order fixed-step Runge-Kuna

X

Figure 3: Inertial Coordinate System /

Initial Orbit Plane Geometry
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algorithm.Detailsoftheformulationaregivenin[7].

B. Attitude Dynamics

Input signals for the attitude dynamics model are orbit

radius vector expressed in inertial coordinates, and aero-

dynamic torque expressed in body coordinates. The body
coordinate system is the same as the geometric coordinate

system defined in Fig. 2 except that its origin is at the center

of mass of the spacecraft. Output signals are body rates and

attitude angles. The mathematical model, of the type found

in [5], represents rotational motion of a rigid body, and is
defined by

I._+_×I._= _._, + Lero ' (16)

where I is the moment of inertia matrix, and _ is the

angular velocity vector associated with the body frame.

Tgg, the gravity gradient torque, is t, iven by [6]

Tgg -- GmEarth r × I "
R 3

(17)

where _ is a unit vector corresponding to /_ expressed in

body coordinates. "ffaero , the aerodynamic torque, is

derived from output of the aerodynamics subsystem

simulation. Equation (16) is solved using an Euler angle
formulation of the kinematics followed by rearrangement to

first-order form (six states) and namerical integration by

Runge-Kutta. Attitude angles of z-y-x Euler rotation

sequence define body frame orient_tion with respect to the
inertial frame. Details of the formul_ttion are given in [7].

C. Aerodynamics

The aerodynamics simulation input signals are orbit

radius vector in inertial coordinates and orbit velocity

vector in body coordinates. Output signals are aerodynamic
force and torque expressed in geometric coordinates. The

spacecraft is modeled as a box _ith six rectangular side

panels (Fig. 2). Drag force for the ith panel is defined

empirically by [6]

_i = --_pV2CdAi(hi.f,)fi if h.13_>0, (18)

0 if fi._=0

where Dis atmospheric density, V is velocity magnitude

relative to the atmosphere, C d is .t drag coefficient, Ais

panel area, fi is a unit vector normal to the panel and

directed outward from the box, and _3 is a unit vector

corresponding to V expressed in geometric coordinates.

Because rotation of the Earth is neglected, no distinction

between relative and absolute velocity is made. The total

aerodynamic force is given by

/6 6 -= El=, Fi (20)

The aerodynamic torque about the geometric center of

the box is given by
6

= Z _'pi X _ , (19)
i=1

where _'pi is a vector directed from the origin of the

geometric coordinate system to the center of pressure of

the ith panel. Finally, Taero, as required in (16), is given

by

Taero----T-(_wtxF) , (20)

where rcm is a vector directed from the geometric center of

the spacecraft to its center of mass. Equation (20) is not

contained within the aerodynamics subsystem simulation,

but is implemented as a coupler function.

V. SYSTEM SIMULATION STRUCTURES

Three system-level simulations of different structure have

been built. The first, illustrated in FigA, uses an
implementation of recursive feedback with centralized

couphng, while a second, illustrated in Fig. 5, uses

distributed coupling. The third uses a conventional first-

order, single-equation-set approach and is the standard
against which the recursive feedback approaches are

compared. For the distributively coupled simulation, the

subsystems have been arranged so that, to the extent

possible, feedback is minimized. Because there is an

information loop that ultimately must be closed, it is not
possible to completely eliminate feedback. The sub-

simulations are identical to those of the centrally coupled

system, but the system-level numerical process is

Aerodynamic I . . Radius Vector * _=

Fortes* _} Orbit Dynamtcs VelocityVecma'*_

[ Radius Vector *..r _ ] Euler Angles ***_

Aerodynamic_Attitude Dynamics I -, S_,s_e_O_u_
[ [ Torques** -t -- J AerodynamicB°dyRates** .I]

! ]R_iusVector* [ _ ] Forces*** "[

i [VelocityVector,,! Aerodynamics ] AerodynamicJ
[ Torques *** "1

Feedb_:k System-levelL

Coupler (

..... Recursive Transfer Point

* Inertial Coordinates

** Body Coordinates, (c.m. origin)

*** Spacecraft Geometric Coordinates

**** From Inertial to Body Frame,

3-2-1 Rotation Sequence

Figure 4: Centrally Coupled Simulation Diagram
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Figure 6: Distributively Coupled Simulation Diagram

substantially affected because, among other things, the

number of scalar signal paths that cross the recursive

transfer point has changed.

Simulations for each of the thre: subsystems have been

constructed as functionally separate entities and combined

within the framework of a single. FORTRAN computer

program that couples them by way of a recursive feedback

process. Input and output signals I functions of time) are

represented by a sequence of linearly connected points

equally spaced in time, and additional points are obtained

through interpolation by each simulation if needed The

orbit dynamics and attitude dynamics simulations have

separate numerical integration processes, while the

aerodynamics simulation has ro integration process

because the model is purely logical-algebraic. All three

simulations are "stand-alone" beca,ase each, in principle, is

capable of producing output signal_ from input signals and

initial conditions. Initial conditions, of course, do not apply

to the aerodynamic simulation because no integration is
involved.

The conventional simulation i:, implemented from the
combined set of equations that define the subsystem models.

They have been collected and rewranged, by hand, to a

single set of 12 first-order differential equations, an
arrangement sometimes called a ",,_tate variables" approach

to system formulation. In that context, the state vector is
defined as

x = [R Iv I,:t, I,a]T , (21 
where R ,V ,_ and ,(2 are three-element row vectors

representing orbit radius, velocity, attitude angles, and body

rates. The system differential equations can now be
represented as a first-order set by

2 = f (3() . (22)

A fourth-order fixed-step ]lunge-Kutta numerical

integration algorithm specifically designed to solve systems

in the form of equation (13) is elnployed to propagate the

system responses.

IV. NUMERICAL RESULTS

A. Definition of the Run Case

Spacecraft mass properties, dimensions, and

aerodynamic data are specified in Fig 2. Initial attitude

angles and body rates are zero. The orbit is initialized so
that in the absence of aerodynamic drag it would be circular

at an altitude of 300 km and an inclination of 30 deg. The

orbit initialization point is in the X-Z plane of the

coordinate system shown in Fig. 3. The spacecraft is
allowed to tumble under the influence of gravity and

aerodynamics for a time period of 60,000 sec.

Algorithm parameters in both recursive method

simulations were set to use five sample points per

convergence interval (including both end points), and the
interval length was 0.4 sec. RMS normalized and absolute

10 -12convergence error tolerances were for the centrally

coupled case and l0 -14 for the distributively coupled case.

The integration step size for the orbit and attitude dynamics

sub-simulations was 0.1 sec., and the aerodynamics sub-

simulation computed aerodynamic effects at a 0.1 sec

sample interval. Integration step size for the conventional
simulation was also 0.1 sec.

B. Comparison of Responses

Responses from all the simulations agree /br

approximately 45,000 sec. of the 60,000 sec. duration; after
that, the recursive method responses begin to diverge from
the conventional method. However, the recursive methods

continue to agree with each other for the full 60,000 sec.

Figs. 6-12 present plots of time segments specifically

selected to illustrate the early agreement and subsequent
deviation of responses. Attitude angles are shown in Fig. 6-

8, body rates are shown in Fig. 9-11, and altitude is shown
for the final 1000 sec. in Fig. 12. Deviations are attributed

primarily to the fact that aerodynamic forces and torques are

linearly interpolated over the sub-simulation integration step

size in the recursive methods, while they are computed at

points internal to the integration interval in the conventional
implementation. Improvement could likely be found

through a more sophisticated interpolation method, a

shorter convergence interval, or an increased number of

points per convergence interval for signal definition. It must
be remembered, however, that eventual disagreement of

dynamical simulations driven by different numerical

processes is always expected. Additional cases involving
two- and three-axis attitude control were studied in [7], and

no s_gnificant deviation became apparent for the full 60,000
sec. duration.
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Performance.

For the example presented, the r¢cursive methods were

slower than the conventional method by a factor of 4 to 6

depending mainly on the coupling _pproach. The centrally

coupled version was slowest, bul no advantage of the

possibility for parallel execution ol subsystem simulations

was taken in the current single-computer implementation.

A multi-platform (or multi-pro_essor) implementation

could naturally take such advantage; however, that

possibility does not exist in the distributively coupled

version. In the recursive methods, response at the latest

stage is compared with response fr,_m the previous stage

to determine convergence with respect to a set of error
tolerances. In the conventional method, no active control of

error is present, and inclusion of such a mechanism would

require additional computation. Conversely,

predetermination of the number of recursion stages and

elimination of the convergence check could significantly

reduce the computation load for the recursive methods.

While it is recognized that speed i:_ important, none of the

simulations were refined for efficiency, and it believed that

many advantages of the recursive feedback approach lie
elsewhere.

VI. SUMMARY AND C()NCLUSIONS

An example nonlinear, continuctts simulation of satellite
motion has been successfully constructed using two

variations of recursive feedback to couple three separate

sub-simulations of orbit dynamics, attitude dynamics, and

aerodynamics. Results have been verified by direct
comparison with a conventionally constructed simulation of

the same system. Each sub-simulation deals with one

engineering discipline, and appr_,priate interactions are

implemented recursively at the system level. The sub-
simulations can, in principle, be run separately on remote

and dissimilar platforms while coupling is facilitated by way

of network. The system simulatior can be designed so that

coupling signals represent physically identifiable variables

associated with physical interfaces among the subsystems.

The e_ample employs three sub-simulations; the method

framework accommodates an arbitrary number. Clearly,

furthe_ investigation of recursively coupled sub-simulations

as a multidiscipline system simulation architecture is
warrar,ted.
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